L-functions at s = 1. II. Artin L-functions with rational characters

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On p-adic Artin L-functions II

Let p be a prime. Iwasawa’s famous conjecture relating Kubota-Leopoldt p-adic L-functions to the structure of certain Galois groups has been proven by Mazur and Wiles in [10]. Wiles later proved a far-reaching generalization involving p-adic L-functions for Hecke characters of finite order for a totally real number field in [14]. As we discussed in [5], an analogue of Iwasawa’s conjecture for p...

متن کامل

On Holomorphic Artin L-functions

Let K/Q be a finite Galois extension, s0 ∈ C \ {1}, Hol(s0) the semigroup of Artin L-functions holomorphic at s0. We present criteria for Artin’s holomorphy conjecture in terms of the semigroup Hol(s0). We conjecture that Artin’s L-functions are holomorphic at s0 if and only if Hol(s0) is factorial. We prove this if s0 is a zero of an L-function associated to a linear character of the Galois gr...

متن کامل

Artin L-functions of small conductor

We study the problem of finding the Artin L-functions with the smallest conductor for a given Galois type. We adapt standard analytic techniques to our novel situation of fixed Galois type and obtain much improved lower bounds on the smallest conductor. For small Galois types we use complete tables of number fields to determine the actual smallest conductor.

متن کامل

Selberg's Conjectures and Artin L-functions

In its comprehensive form, an identity between an automorphic L-function and a "motivic" L-function is called a reciprocity law. The celebrated Artin reciprocity law is perhaps the fundamental example. The conjecture of ShimuraTaniyama that every elliptic curve over Q is "modular" is certainly the most intriguing reciprocity conjecture of our time. The "Himalayan peaks" that hold the secrets of...

متن کامل

On the values of Artin L-functions

I wrote this paper in 1979, as an attempt to extend the results of Borel [2] on zeta functions at negative integers to Artin L-functions. The conceptual framework was provided by Tate’s formulation [10] of Stark’s conjectures. What I needed was a workable definition of the regulator homomorphism in complex K-theory. I discussed this with Borel at the Institute, first over lunch and then in his ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1975

ISSN: 0001-8708

DOI: 10.1016/0001-8708(75)90087-0